论文标题

线性嫁接:放松的神经元修剪有助于可认证的鲁棒性

Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness

论文作者

Chen, Tianlong, Zhang, Huan, Zhang, Zhenyu, Chang, Shiyu, Liu, Sijia, Chen, Pin-Yu, Wang, Zhangyang

论文摘要

可认证的鲁棒性是在安全至关重要的情况下采用深层神经网络(DNN)的高度理想的属性,但通常需要建立乏味的计算。主要障碍在于大型DNN中的大量非线性。为了权衡DNN表现力(要求更多的非线性性)和鲁棒性认证可伸缩性(更喜欢线性性),我们提出了一种新颖的解决方案来通过“授予”适当的线性水平来策略性地操纵神经元。我们提案的核心是首先将无关紧要的依赖神经元线性化,以消除既有用于DNN性能的多余的非线性组件,又对其认证有害。然后,我们优化替换线性激活的相关斜率和截距,以恢复模型性能,同时保持认证性。因此,典型的神经元修剪可以被视为一种特殊情况,即授予固定零斜率和截距的线性功能,这可能过于限制网络灵活性并牺牲其性能。在多个数据集和网络骨架上进行的大量实验表明,我们的线性嫁接可以(1)有效收紧认证界限; (2)在没有认证的鲁棒培训的情况下实现竞争性认证的鲁棒性(即CIFAR-10型号的30%改进); (3)将完整的验证扩展到具有1700万参数的大型对抗训练的模型。代码可在https://github.com/vita-group/linearity-grafting上找到。

Certifiable robustness is a highly desirable property for adopting deep neural networks (DNNs) in safety-critical scenarios, but often demands tedious computations to establish. The main hurdle lies in the massive amount of non-linearity in large DNNs. To trade off the DNN expressiveness (which calls for more non-linearity) and robustness certification scalability (which prefers more linearity), we propose a novel solution to strategically manipulate neurons, by "grafting" appropriate levels of linearity. The core of our proposal is to first linearize insignificant ReLU neurons, to eliminate the non-linear components that are both redundant for DNN performance and harmful to its certification. We then optimize the associated slopes and intercepts of the replaced linear activations for restoring model performance while maintaining certifiability. Hence, typical neuron pruning could be viewed as a special case of grafting a linear function of the fixed zero slopes and intercept, that might overly restrict the network flexibility and sacrifice its performance. Extensive experiments on multiple datasets and network backbones show that our linearity grafting can (1) effectively tighten certified bounds; (2) achieve competitive certifiable robustness without certified robust training (i.e., over 30% improvements on CIFAR-10 models); and (3) scale up complete verification to large adversarially trained models with 17M parameters. Codes are available at https://github.com/VITA-Group/Linearity-Grafting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源