论文标题
深图神经网络中的特征过度相关:一个新的视角
Feature Overcorrelation in Deep Graph Neural Networks: A New Perspective
论文作者
论文摘要
近年来,图形神经网络(GNN)在许多现实世界中的应用(例如建议和药物发现)中取得了巨大的成功。尽管取得了成功,但已将过度厚度确定为限制GNN绩效的关键问题之一。这表明由于堆叠聚合器,学到的节点表示形式是无法区分的。在本文中,我们提出了一种新的观点,以研究深度GNN的性能降低,即特征过度相关。通过有关此问题的经验和理论研究,我们证明了更深层次的GNN中的特征过度相关的存在,并揭示了导致该问题的潜在原因。为了减少特征相关性,我们提出了一个通用框架,可以鼓励GNNS编码较少的冗余信息。广泛的实验表明,Decorr可以帮助实现更深入的GNN,并与解决过度平滑问题的现有技术相辅相成。
Recent years have witnessed remarkable success achieved by graph neural networks (GNNs) in many real-world applications such as recommendation and drug discovery. Despite the success, oversmoothing has been identified as one of the key issues which limit the performance of deep GNNs. It indicates that the learned node representations are highly indistinguishable due to the stacked aggregators. In this paper, we propose a new perspective to look at the performance degradation of deep GNNs, i.e., feature overcorrelation. Through empirical and theoretical study on this matter, we demonstrate the existence of feature overcorrelation in deeper GNNs and reveal potential reasons leading to this issue. To reduce the feature correlation, we propose a general framework DeCorr which can encourage GNNs to encode less redundant information. Extensive experiments have demonstrated that DeCorr can help enable deeper GNNs and is complementary to existing techniques tackling the oversmoothing issue.