论文标题
部分可观测时空混沌系统的无模型预测
Edge Inference with Fully Differentiable Quantized Mixed Precision Neural Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The large computing and memory cost of deep neural networks (DNNs) often precludes their use in resource-constrained devices. Quantizing the parameters and operations to lower bit-precision offers substantial memory and energy savings for neural network inference, facilitating the use of DNNs on edge computing platforms. Recent efforts at quantizing DNNs have employed a range of techniques encompassing progressive quantization, step-size adaptation, and gradient scaling. This paper proposes a new quantization approach for mixed precision convolutional neural networks (CNNs) targeting edge-computing. Our method establishes a new pareto frontier in model accuracy and memory footprint demonstrating a range of quantized models, delivering best-in-class accuracy below 4.3 MB of weights (wgts.) and activations (acts.). Our main contributions are: (i) hardware-aware heterogeneous differentiable quantization with tensor-sliced learned precision, (ii) targeted gradient modification for wgts. and acts. to mitigate quantization errors, and (iii) a multi-phase learning schedule to address instability in learning arising from updates to the learned quantizer and model parameters. We demonstrate the effectiveness of our techniques on the ImageNet dataset across a range of models including EfficientNet-Lite0 (e.g., 4.14MB of wgts. and acts. at 67.66% accuracy) and MobileNetV2 (e.g., 3.51MB wgts. and acts. at 65.39% accuracy).