论文标题
矩阵产品操作员方法,用于非平衡浮点稳态
A matrix product operator approach to non-equilibrium Floquet steady states
论文作者
论文摘要
我们提出了一种数值方法,用于模拟一维定期驱动(floquet)多体系统的非平衡浮光稳态,该系统耦合到耗散浴缸,称为开放系统Floquet DMRG(OFDMRG)。该方法基于用于频率空间的floquet密度矩阵的矩阵产品运算符ANSATZ,并可以访问超出精确主方程或量子轨迹模拟的大型系统,同时保留有关浮力稳态中周期性微动物的信息。该技术的激发状态扩展还允许计算渐近长时间尺度上稳态的动力学方法。我们使用驱动的ISING模型对OFDMRG进行了基准测试,并将其应用于研究通过耦合与冷浴的耗散前离散的时间晶体序列的耗散稳定的可能性。
We present a numerical method to simulate non-equilibrium Floquet steady states of one-dimensional periodically-driven (Floquet) many-body systems coupled to a dissipative bath, called open-system Floquet DMRG (OFDMRG). This method is based on a matrix product operator ansatz for the Floquet density matrix in frequency-space, and enables access to large systems beyond the reach of exact master-equation or quantum trajectory simulations, while retaining information about the periodic micro-motion in Floquet steady states. An excited-state extension of this technique also allows computation of the dynamical approach to the steady state on asymptotically long timescales. We benchmark the OFDMRG approach with a driven-dissipative Ising model, and apply it to study the possibility of dissipatively stabilizing pre-thermal discrete time-crystalline order by coupling to a cold bath.