论文标题
部分可观测时空混沌系统的无模型预测
Implementing two-qubit gates at the quantum speed limit
论文作者
论文摘要
基本量子门的速度,尤其是两倍的门,最终设定了量子电路可以运行的速度的限制。在这项工作中,我们在实验上证明了通常使用两个超导式transmon吨位之间的物理相互作用强度允许的最快速度的普遍使用的两分门。我们通过实施使用机器学习启发的最佳控制方法设计的实验门来实现此量子限制。重要的是,我们的方法仅要求单量驱动强度比相互作用强度大地比相互作用强度大,以实现与高保真度接近其分析速度限制的任意两倍栅极。因此,该方法适用于各种平台,包括具有可比单品和两数Quibent Gate速度的平台,或具有始终相互作用的平台。我们期望我们的方法为非本地的双Quibent大门提供显着的加速,这些大门通常是通过长序列单量和天然两倍的大门来实现的。
The speed of elementary quantum gates, particularly two-qubit gates, ultimately sets the limit on the speed at which quantum circuits can operate. In this work, we experimentally demonstrate commonly used two-qubit gates at nearly the fastest possible speed allowed by the physical interaction strength between two superconducting transmon qubits. We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method. Importantly, our method only requires the single-qubit drive strength to be moderately larger than the interaction strength to achieve an arbitrary two-qubit gate close to its analytical speed limit with high fidelity. Thus, the method is applicable to a variety of platforms including those with comparable single-qubit and two-qubit gate speeds, or those with always-on interactions. We expect our method to offer significant speedups for non-native two-qubit gates that are typically achieved with a long sequence of single-qubit and native two-qubit gates.