论文标题
结构化的稀疏性学习,以实现有效的视频超分辨率
Structured Sparsity Learning for Efficient Video Super-Resolution
论文作者
论文摘要
视频超分辨率(VSR)模型的高计算成本阻碍了其在资源有限设备(例如智能手机和无人机)上的部署。现有的VSR模型包含相当大的冗余过滤器,从而拖延了推理效率。为了修剪这些不重要的过滤器,我们根据VSR的特性开发了一种结构化修剪方案,称为结构化稀疏学习(SSL)。在SSL中,我们为VSR模型中的几个关键组件设计修剪方案,包括剩余块,经常性网络和UPSMPLING网络。具体而言,我们为复发网络的残留块开发了残留的稀疏连接(RSC)方案,以解放修剪限制并保留修复信息。对于提高采样网络,我们设计了一个像素垫圈修剪方案,以确保特征通道空间转换的准确性。此外,我们观察到,将修剪误差放大,因为隐藏状态与经常性网络一起传播。为了减轻问题,我们设计了时间填充(TF)。广泛的实验表明,SSL可以在定量和定性上显着胜过最新方法。
The high computational costs of video super-resolution (VSR) models hinder their deployment on resource-limited devices, (e.g., smartphones and drones). Existing VSR models contain considerable redundant filters, which drag down the inference efficiency. To prune these unimportant filters, we develop a structured pruning scheme called Structured Sparsity Learning (SSL) according to the properties of VSR. In SSL, we design pruning schemes for several key components in VSR models, including residual blocks, recurrent networks, and upsampling networks. Specifically, we develop a Residual Sparsity Connection (RSC) scheme for residual blocks of recurrent networks to liberate pruning restrictions and preserve the restoration information. For upsampling networks, we design a pixel-shuffle pruning scheme to guarantee the accuracy of feature channel-space conversion. In addition, we observe that pruning error would be amplified as the hidden states propagate along with recurrent networks. To alleviate the issue, we design Temporal Finetuning (TF). Extensive experiments show that SSL can significantly outperform recent methods quantitatively and qualitatively.