论文标题

使用混合图网络模拟器学习大规模地下模拟

Learning Large-scale Subsurface Simulations with a Hybrid Graph Network Simulator

论文作者

Wu, Tailin, Wang, Qinchen, Zhang, Yinan, Ying, Rex, Cao, Kaidi, Sosič, Rok, Jalali, Ridwan, Hamam, Hassan, Maucec, Marko, Leskovec, Jure

论文摘要

地下模拟使用计算模型通过多孔介质预测流体(例如油,水,天然气)的流动。这些模拟在工业应用(例如石油生产)中至关重要,在这些应用中,需要快速,准确的模型才能进行高级决策,例如,进行井安置优化和现场开发计划。经典的有限差数数值模拟器需要大量的计算资源来对大规模现实世界进行建模。另外,通过依靠近似物理模型,流线模拟器和数据驱动的替代模型在计算上更有效,但是它们不足以在大规模上对复杂的储层动力学进行建模。在这里,我们介绍了混合图网络模拟器(HGNS),该模拟器是一个数据驱动的替代模型,用于学习3D地下流体流的储层模拟。为了模拟局部和全球尺度上的复杂储层动力学,HGN由地下图神经网络(SGNN)组成,以建模流体流的演变和3D-U-NET,以建模压力的演变。 HGNS能够扩展到每个时间步长数百万个单元的网格,比以前的替代模型高两个数量级,并且可以准确地预测流体流量数十亿个时间步长(未来几年)。使用带有110万个单元的行业标准地下流数据集(SPE-10),我们证明,与标准的地下模拟器相比,HGN能够将推理时间降低到18倍,并且它通过将长期预测错误降低21%来优于其他基于学习的模型。

Subsurface simulations use computational models to predict the flow of fluids (e.g., oil, water, gas) through porous media. These simulations are pivotal in industrial applications such as petroleum production, where fast and accurate models are needed for high-stake decision making, for example, for well placement optimization and field development planning. Classical finite difference numerical simulators require massive computational resources to model large-scale real-world reservoirs. Alternatively, streamline simulators and data-driven surrogate models are computationally more efficient by relying on approximate physics models, however they are insufficient to model complex reservoir dynamics at scale. Here we introduce Hybrid Graph Network Simulator (HGNS), which is a data-driven surrogate model for learning reservoir simulations of 3D subsurface fluid flows. To model complex reservoir dynamics at both local and global scale, HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure. HGNS is able to scale to grids with millions of cells per time step, two orders of magnitude higher than previous surrogate models, and can accurately predict the fluid flow for tens of time steps (years into the future). Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators, and that it outperforms other learning-based models by reducing long-term prediction errors by up to 21%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源