论文标题

完全自以为是的有限温度$ gw $在高斯bloch轨道上的固体

Fully Self-Consistent Finite-Temperature $GW$ in Gaussian Bloch Orbitals for Solids

论文作者

Yeh, Chia-Nan, Iskakov, Sergei, Zgid, Dominika, Gull, Emanuel

论文摘要

我们为Gaussian Bloch轨道固体的完全自以为是的有限温度$ GW $方法提供了算法和实施细节。我们的实施是基于有限的绿色功能形式主义的基础,在该功能形式主义中,所有方程式都在假想轴上求解,而无需在自我矛盾期间求助于分析延续。未使用准粒子近似,并且明确评估了自能源的所有基质元素。通过评估选定的半导体和绝缘子的带隙来测试该方法。当考虑到有限尺寸的校正和基础设置错误时,我们与其他不同的,有限的有限温度SC $ GW $实现同意。通过将计算密集型计算迁移到GPU,我们可以在具有最佳性能的大型超级计算机上获得可扩展的结果。我们的工作证明了基于高斯轨道的sc $ gw $的适用性,用于$ \ emph {ab intib} $相关材料模拟,并为嵌入在$ gw $顶部的嵌入方法提供了一个声音起点。

We present algorithmic and implementation details for the fully self-consistent finite-temperature $GW$ method in Gaussian Bloch orbitals for solids. Our implementation is based on the finite-temperature Green's function formalism in which all equations are solved on the imaginary axis, without resorting to analytical continuation during the self-consistency. No quasiparticle approximation is employed and all matrix elements of the self-energy are explicitly evaluated. The method is tested by evaluating the band gaps of selected semiconductors and insulators. We show agreement with other, differently formulated finite-temperature sc$GW$ implementations when finite-size corrections and basis set errors are taken into account. By migrating computationally intensive calculations to GPUs, we obtain scalable results on large supercomputers with nearly optimal performance. Our work demonstrates the applicability of Gaussian orbital based sc$GW$ for $\emph{ab initio}$ correlated materials simulations and provides a sound starting point for embedding methods built on top of $GW$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源