论文标题
使用CNN用于可穿戴应用的CNN基于混合功能的ECG分类
Classification of ECG based on Hybrid Features using CNNs for Wearable Applications
论文作者
论文摘要
心脏死亡和心律不齐占全球所有死亡的很大一部分。心电图(ECG)是用于心血管疾病的最广泛使用的筛查工具。传统上,ECG信号是手动分类的,需要经验和良好的技巧,同时耗时且容易出错。因此,机器学习算法因其执行复杂数据分析的能力而被广泛采用。从ECG(主要是Q,r和s)中引入的特征广泛用于心律不齐。在这项工作中,我们证明了使用混合功能和三种不同模型的ECG分类的性能提高,这是我们过去提出的1D卷积神经网络(CNN)模型的建立。这项工作中提出的基于RR间隔的模型的精度为98.98%,这是对基线模型的改进。为了使模型免受噪声的影响,我们使用频率功能更新了模型,并在噪声的存在下实现了良好的持续性能,精度略低为98.69%。此外,开发了另一个结合频率特征和RR间隔功能的模型,在嘈杂的环境中,持续性能良好,高精度为99%。由于其高精度和噪声免疫力,因此提出的结合了多种混合功能的模型非常适合非门诊可穿戴感应应用。
Sudden cardiac death and arrhythmia account for a large percentage of all deaths worldwide. Electrocardiography (ECG) is the most widely used screening tool for cardiovascular diseases. Traditionally, ECG signals are classified manually, requiring experience and great skill, while being time-consuming and prone to error. Thus machine learning algorithms have been widely adopted because of their ability to perform complex data analysis. Features derived from the points of interest in ECG - mainly Q, R, and S, are widely used for arrhythmia detection. In this work, we demonstrate improved performance for ECG classification using hybrid features and three different models, building on a 1-D convolutional neural network (CNN) model that we had proposed in the past. An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model. To make the model immune to noise, we updated the model using frequency features and achieved good sustained performance in presence of noise with a slightly lower accuracy of 98.69%. Further, another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments. Due to its high accuracy and noise immunity, the proposed model which combines multiple hybrid features, is well suited for ambulatory wearable sensing applications.