论文标题
每个没有相邻三角形的环形图都是奇怪的8色
Every toroidal graphs without adjacent triangles is odd 8-colorable
论文作者
论文摘要
奇数着色是一种适当的着色,并具有额外的限制,即每个非分离顶点的颜色在其附近看起来有些奇数。 $ k $的最低颜色数量可以确保图$ g $的奇数颜色用$χ_o(g)$表示。我们说$ g $是奇数$ k $ -ocolorable,如果$χ_o(g)\ le K $。该概念是最近由Petruševski和škrekovski引入的,他们证明如果$ G $是平面,则$χ_{O}(g)(g)\ leq 9 $。环形图是可以嵌入圆环的图。请注意,$ k_7 $是环形图,$χ_{o}(g)\ leq7 $。天和尹证明,每个环形图都是奇怪的$ 9 $ - 可加油,而没有$ 3 $ -CYCLES的每个环形图都是奇怪的$ 9 $ - 颜色。在本文中,我们证明了每个没有相邻$ 3 $ CYCLE的图形图是奇怪的$ 8 $ - 可油。
Odd coloring is a proper coloring with an additional restriction that every non-isolated vertex has some color that appears an odd number of times in its neighborhood. The minimum number of colors $k$ that can ensure an odd coloring of a graph $G$ is denoted by $χ_o(G)$. We say $G$ is odd $k$-colorable if $χ_o(G)\le k$. This notion is introduced very recently by Petruševski and Škrekovski, who proved that if $G$ is planar then $ χ_{o}(G) \leq 9 $. A toroidal graph is a graph that can be embedded on a torus. Note that a $K_7$ is a toroidal graph, $χ_{o}(G)\leq7$. Tian and Yin proved that every toroidal graph is odd $9$-colorable and every toroidal graph without $3$-cycles is odd $9$-colorable. In this paper, we proved that every toroidal graph without adjacent $3$-cycles is odd $8$-colorable.