论文标题
自主排控制,并具有集成的深入增强学习和动态编程
Autonomous Platoon Control with Integrated Deep Reinforcement Learning and Dynamic Programming
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Deep Reinforcement Learning (DRL) is regarded as a potential method for car-following control and has been mostly studied to support a single following vehicle. However, it is more challenging to learn a stable and efficient car-following policy when there are multiple following vehicles in a platoon, especially with unpredictable leading vehicle behavior. In this context, we adopt an integrated DRL and Dynamic Programming (DP) approach to learn autonomous platoon control policies, which embeds the Deep Deterministic Policy Gradient (DDPG) algorithm into a finite-horizon value iteration framework. Although the DP framework can improve the stability and performance of DDPG, it has the limitations of lower sampling and training efficiency. In this paper, we propose an algorithm, namely Finite-Horizon-DDPG with Sweeping through reduced state space using Stationary approximation (FH-DDPG-SS), which uses three key ideas to overcome the above limitations, i.e., transferring network weights backward in time, stationary policy approximation for earlier time steps, and sweeping through reduced state space. In order to verify the effectiveness of FH-DDPG-SS, simulation using real driving data is performed, where the performance of FH-DDPG-SS is compared with those of the benchmark algorithms. Finally, platoon safety and string stability for FH-DDPG-SS are demonstrated.