论文标题

一个深度学习网络,用于对心脏心动过速中心脏内电图的分类

A Deep Learning Network for the Classification of Intracardiac Electrograms in Atrial Tachycardia

论文作者

Chen, Zerui, Teo, Sonia Xhyn, Ochtman, Andrie, Saw, Shier Nee, Cheng, Nicholas, Lim, Eric Tien Siang, Lyu, Murphy, Lee, Hwee Kuan

论文摘要

一项关键技术,可以使导管消融治疗对心脏心动过速的成功取得成功,这是激活映射,它依赖于所有获得的心脏内电电图(EGM)信号的手动局部激活时间(LAT)注释。由于难以识别分离信号的信号激活峰,这是一个耗时且容易出错的过程。这项工作为将EGM信号自动分类为三种不同类型的深度学习方法:正常,异常和未分类,这是LAT注释管道的一部分,并有助于绕过对LAT手动注释的需求。深度学习网络是CNN-LSTM模型,是一种混合网络体系结构,将卷积神经网络(CNN)层与较长的短期内存(LSTM)层相结合。 1452个来自9名接受临床指示3D心脏映射的患者的EGM信号用于我们模型的培训,验证和测试。从我们的发现,CNN-LSTM模型的精度为平衡数据集的精度为81%。为了进行比较,我们分别开发了一个基于规则的决策树模型,该模型的准确性为同一平衡数据集的准确性为67%。我们的工作阐明了使用决策树模型提出的一组明确指定的规则来分析EGM信号,因为EGM信号很复杂,因此不合适。另一方面,CNN-LSTM模型具有学习信号中复杂的内在特征并确定有用的功能以区分EGM信号的能力。

A key technology enabling the success of catheter ablation treatment for atrial tachycardia is activation mapping, which relies on manual local activation time (LAT) annotation of all acquired intracardiac electrogram (EGM) signals. This is a time-consuming and error-prone procedure, due to the difficulty in identifying the signal activation peaks for fractionated signals. This work presents a Deep Learning approach for the automated classification of EGM signals into three different types: normal, abnormal, and unclassified, which forms part of the LAT annotation pipeline, and contributes towards bypassing the need for manual annotations of the LAT. The Deep Learning network, the CNN-LSTM model, is a hybrid network architecture which combines convolutional neural network (CNN) layers with long short-term memory (LSTM) layers. 1452 EGM signals from a total of 9 patients undergoing clinically-indicated 3D cardiac mapping were used for the training, validation and testing of our models. From our findings, the CNN-LSTM model achieved an accuracy of 81% for the balanced dataset. For comparison, we separately developed a rule-based Decision Trees model which attained an accuracy of 67% for the same balanced dataset. Our work elucidates that analysing the EGM signals using a set of explicitly specified rules as proposed by the Decision Trees model is not suitable as EGM signals are complex. The CNN-LSTM model, on the other hand, has the ability to learn the complex, intrinsic features within the signals and identify useful features to differentiate the EGM signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源