论文标题
使用深色场稀疏先验
High-fidelity quantitative differential phase contrast deconvolution using dark-field sparse prior
论文作者
论文摘要
差分相比(DPC)成像在定量相测量家族中起重要作用。然而,尚未优化定量DPC(QDPC)成像的重建算法,因为它不包含QDPC成像的天生特性。在这项研究中,我们提出了一个简单但有效的图像先验,即暗场稀疏先验(DSP),以促进所有基于DPC的相位重建算法的相重建质量。 DSP是基于关键观察结果,即大多数想法差异相比图像的像素值是零,因为在反对称照明下将两个图像的减法减去取消所有背景成分。在此DSP之前,我们形成了一个新的成本函数,其中使用L0-Norm代表DSP。此外,我们基于(1)半二次分裂开发了两种不同的算法,以及(2)Richardson-Lucy反卷积来解决此NP-HARD L0-NORM问题。我们在模拟和实验数据上测试了我们的新模型,并与包括L2-Norm和总变化正常(包括L2-NORM和总变化的最新方法)进行了比较。结果表明,我们所提出的模型在相重建质量和实施效率方面表现出色,其中它可以显着提高实验鲁棒性,同时保持数据保真度。
Differential phase contrast (DPC) imaging plays an important role in the family of quantitative phase measurement. However, the reconstruction algorithm for quantitative DPC (qDPC) imaging is not yet optimized, as it does not incorporate the inborn properties of qDPC imaging. In this research, we propose a simple but effective image prior, the dark-field sparse prior (DSP), to facilitate the phase reconstruction quality for all DPC-based phase reconstruction algorithms. The DSP is based on the key observation that most pixel values for an idea differential phase contrast image are zeros since the subtraction of two images under anti-symmetric illumination cancels all background components. With this DSP prior, we formed a new cost function in which L0-norm was used to represent the DSP. Further, we developed two different algorithms based on (1) the Half Quadratic Splitting, and (2) the Richardson-Lucy deconvolution to solve this NP-hard L0-norm problem. We tested our new model on both simulated and experimental data and compare against state-of-the-art methods including L2-norm and total variation regularizations. Results show that our proposed model is superior in terms of phase reconstruction quality and implementation efficiency, in which it significantly increases the experimental robustness, while maintaining the data fidelity.