论文标题

相对于各向异性的各向异性花栗鼠常数的优化

Optimization of the anisotropic Cheeger constant with respect to the anisotropy

论文作者

Parini, Enea, Saracco, Giorgio

论文摘要

给定一个开放的,有界的集合$ω$中的$ \ mathbb {r}^n $,我们考虑在相关的单位球的体积约束下,相对于各向异性$ k $,各向异性cheeger常数$ h_k(ω)$相对于各向异性$ k $。在平面案例中,假设$ k $是一个凸,中央对称的机构,我们证明了最小化器的存在。此外,如果$ω$是一个球,我们表明最佳各向异性$ k $不是球,并且在所有常规多边形中,广场可提供最小的价值。

Given an open, bounded set $Ω$ in $\mathbb{R}^N$, we consider the minimization of the anisotropic Cheeger constant $h_K(Ω)$ with respect to the anisotropy $K$, under a volume constraint on the associated unit ball. In the planar case, under the assumption that $K$ is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if $Ω$ is a ball, we show that the optimal anisotropy $K$ is not a ball and that, among all regular polygons, the square provides the minimal value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源