论文标题

在各种叶片大小的图像中自动检测水稻疾病

Automatic Detection of Rice Disease in Images of Various Leaf Sizes

论文作者

Kiratiratanapruk, Kantip, Temniranrat, Pitchayagan, Sinthupinyo, Wasin, Marukatat, Sanparith, Patarapuwadol, Sujin

论文摘要

需要快速,准确且负担得起的水稻疾病检测方法来帮助水稻农民解决设备和专业短缺问题。在本文中,我们专注于使用计算机视觉技术来检测稻田照片图像的水稻疾病的解决方案。由于各种环境因素,处理普通农民在现实通用情况下处理的图像非常具有挑战性,而稻叶对象大小的变化是导致绩效等级的主要因素。为了解决这个问题,我们提出了一种将CNN对象检测与图像平铺技术结合的技术,该技术基于图像中稻叶的自动估计宽度大小作为尺寸参考,用于除以原始输入图像。通过小型CNN(例如18层重新连接体系结构模型)创建了一个用于估计叶片宽度的模型。生成了一个新的,具有均匀尺寸的物体的新的瓷砖子图像集,并用作训练水稻疾病预测模型的输入。对我们的技术进行了4,960张图像的评估,包括八种不同类型的水稻疾病,包括爆炸,枯萎病,棕色点,狭窄的棕色点,橙色,红色条纹,米草状特技病毒和条纹疾病。在实验中,在所有八个类中评估的叶片宽度预测任务的平均绝对百分比误差(MAPE)为11.18%,表明叶片宽度预测模型的表现良好。通过培训并通过瓷砖数据集进行了训练和测试时,Yolov4体系结构预测性能的平均平均精度(地图)的平均精度(地图)的平均精度(地图)的平均精度(地图)提高到91.14%。根据我们的研究,提出的图像平铺技术提高了水稻疾病的检测效率。

Fast, accurate and affordable rice disease detection method is required to assist rice farmers tackling equipment and expertise shortages problems. In this paper, we focused on the solution using computer vision technique to detect rice diseases from rice field photograph images. Dealing with images took in real-usage situation by general farmers is quite challenging due to various environmental factors, and rice leaf object size variation is one major factor caused performance gradation. To solve this problem, we presented a technique combining a CNN object detection with image tiling technique, based on automatically estimated width size of rice leaves in the images as a size reference for dividing the original input image. A model to estimate leaf width was created by small size CNN such as 18 layer ResNet architecture model. A new divided tiled sub-image set with uniformly sized object was generated and used as input for training a rice disease prediction model. Our technique was evaluated on 4,960 images of eight different types of rice leaf diseases, including blast, blight, brown spot, narrow brown spot, orange, red stripe, rice grassy stunt virus, and streak disease. The mean absolute percentage error (MAPE) for leaf width prediction task evaluated on all eight classes was 11.18% in the experiment, indicating that the leaf width prediction model performed well. The mean average precision (mAP) of the prediction performance on YOLOv4 architecture was enhanced from 87.56% to 91.14% when trained and tested with the tiled dataset. According to our study, the proposed image tiling technique improved rice disease detection efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源