论文标题

谨慎学习多属性偏好

Cautious Learning of Multiattribute Preferences

论文作者

Gilbert, Hugo, Ouaguenouni, Mohamed, Ozturk, Meltem, Spanjaard, Olivier

论文摘要

本文致力于一种谨慎的学习方法,用于预测以二进制属性为特征的替代方案(正式,每个替代方案都被视为属性的子集)。通过“谨慎”,我们的意思是,该模型学会了代表多属性偏好的模型足够一般,足以与替代方案的任何严格的弱顺序兼容,并且如果收集到的数据与可靠的预测不兼容,我们允许我们自己不预测某些偏好。如果所有最简单的模型(遵循OCCAM的剃须刀原理)解释了培训数据,则预测的偏好将被认为是可靠的。预测基于替代方案之间的序数优势关系[Fishburn和Lavalle,1996]。优势关系依赖于不确定性集,该设置包含多属性效用函数参数的可能值。提供数值测试以评估所做预测的丰富性和可靠性。

This paper is dedicated to a cautious learning methodology for predicting preferences between alternatives characterized by binary attributes (formally, each alternative is seen as a subset of attributes). By "cautious", we mean that the model learned to represent the multi-attribute preferences is general enough to be compatible with any strict weak order on the alternatives, and that we allow ourselves not to predict some preferences if the data collected are not compatible with a reliable prediction. A predicted preference will be considered reliable if all the simplest models (following Occam's razor principle) explaining the training data agree on it. Predictions are based on an ordinal dominance relation between alternatives [Fishburn and LaValle, 1996]. The dominance relation relies on an uncertainty set encompassing the possible values of the parameters of the multi-attribute utility function. Numerical tests are provided to evaluate the richness and the reliability of the predictions made.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源