论文标题

扩散运输对准

Diffusion Transport Alignment

论文作者

Duque, Andres F., Wolf, Guy, Moon, Kevin R.

论文摘要

在不同工具或条件对给定现象的研究产生不同但相关的域的情况下,多模式数据的整合提出了挑战。许多现有的数据集成方法假设整个数据集的域之间的一对一对应关系可能是不现实的。此外,现有的流形比对方法不适用于数据包含特定区域区域的情况,即,对于其他域中的一定部分数据,没有一个对应物。我们提出了扩散转运比对(DTA),这是一种半监督的歧管比对方法,它利用仅几个点之间的先前对应知识来对准域。通过构建扩散过程,DTA找到了从具有不同特征空间的两个异质域测量的数据之间的运输计划,通过假设,它们共享来自相同的基础数据生成过程的相似几何结构。 DTA还可以以数据驱动的方式计算部分对准,从而在仅在一个域中测量某些数据时会准确对齐。我们从经验上证明,DTA在该半监视设置中对齐多模式数据的其他方法优于其他方法。我们还从经验上表明,DTA获得的对齐方式可以改善机器学习任务的性能,例如域适应性,域间特征映射和探索性数据分析,同时表现优于竞争方法。

The integration of multimodal data presents a challenge in cases when the study of a given phenomena by different instruments or conditions generates distinct but related domains. Many existing data integration methods assume a known one-to-one correspondence between domains of the entire dataset, which may be unrealistic. Furthermore, existing manifold alignment methods are not suited for cases where the data contains domain-specific regions, i.e., there is not a counterpart for a certain portion of the data in the other domain. We propose Diffusion Transport Alignment (DTA), a semi-supervised manifold alignment method that exploits prior correspondence knowledge between only a few points to align the domains. By building a diffusion process, DTA finds a transportation plan between data measured from two heterogeneous domains with different feature spaces, which by assumption, share a similar geometrical structure coming from the same underlying data generating process. DTA can also compute a partial alignment in a data-driven fashion, resulting in accurate alignments when some data are measured in only one domain. We empirically demonstrate that DTA outperforms other methods in aligning multimodal data in this semisupervised setting. We also empirically show that the alignment obtained by DTA can improve the performance of machine learning tasks, such as domain adaptation, inter-domain feature mapping, and exploratory data analysis, while outperforming competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源