论文标题

使用衍射解码器的超分辨率图像显示

Super-resolution image display using diffractive decoders

论文作者

Isil, Cagatay, Mengu, Deniz, Zhao, Yifan, Tabassum, Anika, Li, Jingxi, Luo, Yi, Jarrahi, Mona, Ozcan, Aydogan

论文摘要

波前调制器的限制空间散宽产品(SBP)阻碍了大型视野(FOV)上图像的高分辨率合成/投影。我们报告了一种深度学习的衍射显示设计,该设计基于一对培训的电子编码器和衍射光学解码器,用于合成/项目超级分辨图像,使用低分辨率波形调节器。由训练有素的卷积神经网络(CNN)组成的数字编码器迅速预处了高分辨率的感兴趣图像,因此它们的空间信息被编码为低分辨率(LR)调制模式,该模式通过低SBP Wavefront调制器投影。衍射解码器使用薄的透射层处理该LR编码的信息,这些层是使用深度学习构成的,以在其输出FOV处进行全面合成和项目超级分辨的图像。我们的结果表明,这种衍射图像显示可以达到〜4的超分辨率因子,表明SBP增加了约16倍。我们还使用3D打印的衍射解码器在THZ频谱上实验验证了这种衍射超分辨率显示器的成功。该衍射图像解码器可以缩放以在可见的波长下进行操作,并激发紧凑,低功率和计算效率的大型FOV和高分辨率显示器的设计。

High-resolution synthesis/projection of images over a large field-of-view (FOV) is hindered by the restricted space-bandwidth-product (SBP) of wavefront modulators. We report a deep learning-enabled diffractive display design that is based on a jointly-trained pair of an electronic encoder and a diffractive optical decoder to synthesize/project super-resolved images using low-resolution wavefront modulators. The digital encoder, composed of a trained convolutional neural network (CNN), rapidly pre-processes the high-resolution images of interest so that their spatial information is encoded into low-resolution (LR) modulation patterns, projected via a low SBP wavefront modulator. The diffractive decoder processes this LR encoded information using thin transmissive layers that are structured using deep learning to all-optically synthesize and project super-resolved images at its output FOV. Our results indicate that this diffractive image display can achieve a super-resolution factor of ~4, demonstrating a ~16-fold increase in SBP. We also experimentally validate the success of this diffractive super-resolution display using 3D-printed diffractive decoders that operate at the THz spectrum. This diffractive image decoder can be scaled to operate at visible wavelengths and inspire the design of large FOV and high-resolution displays that are compact, low-power, and computationally efficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源