论文标题
在干燥,潮汐岩石行星上的大气翻转循环主要由辐射冷却驱动
Atmospheric Overturning Circulation on Dry, Tidally-locked Rocky Planets is Mainly Driven by Radiative Cooling
论文作者
论文摘要
在这项研究中,我们检查了在干燥,潮汐岩石行星上的大气翻转循环的驾驶机制,而没有水蒸气或其他物种的凝结。我们发现,主要驾驶过程是二氧化碳(或其他不可固化的温室气体)的辐射冷却,而不是CO2温室变暖或恒星辐射。恒星辐射是最终机制,但不是直接机制。由于恒星辐射中不均匀分布与自由对流层中有效的水平能传输的组合,因此远离近代区域的区域有强烈的温度反转。这种反转使二氧化碳具有辐射冷却效果,而不是与地球大气层平流层相同的大气的辐射变暖效果。这种冷却效果会产生负浮力,并驱动大规模的下降流,从而支持全球尺度推翻循环的形成。如果将二氧化碳排除在大气中,则不管恒星辐射的水平如何,倾覆的循环变得非常弱。这种机制与地球上的大气翻转循环或潮湿的潮汐岩石行星完全不同,在该行星中,潜在的热量释放和/或斜压不稳定性是主导的机制。我们的研究提高了对潮汐外球星的大气循环以及其他干燥行星的理解,例如太阳系中的金星和火星。
In this study, we examine the driving mechanism for the atmospheric overturning circulation on dry, tidally-locked rocky planets without the condensation of water vapor or other species. We find that the main driving process is the radiative cooling of CO2 (or other non-condensable greenhouse gases) rather than CO2 greenhouse warming or stellar radiation. Stellar radiation is the ultimate mechanism but not the direct mechanism. Due to the combination of the uneven distribution in the stellar radiation and effective horizontal energy transports in the free troposphere, there is strong temperature inversion in the area away from the substellar region. This inversion makes CO2 to have a radiative cooling effect rather than a radiative warming effect for the atmosphere, same as that in the stratosphere of Earth's atmosphere. This cooling effect produces negative buoyancy and drives large-scale downwelling, supporting the formation of a global-scale overturning circulation. If CO2 is excluded from the atmosphere, the overturning circulation becomes very weak, regardless the level of stellar radiation. This mechanism is completely different from that for the atmospheric overturning circulation on Earth or on moist, tidally-locked rocky planets, where latent heat release and/or baroclinic instability are the dominated mechanisms. Our study improves the understanding of the atmospheric circulation on tidally-locked exoplanets and also on other dry planets, such as Venus and Mars in the solar system.