论文标题

短纤维双曲线表面的短同源碱基

Short homology bases for hyperelliptic hyperbolic surfaces

论文作者

Buser, Peter, Makover, Eran, Muetzel, Bjoern

论文摘要

鉴于过度椭圆表面$ s $ s $属$ g \ geq 2 $,我们在$ s $上找到了同源独立环的长度。结果,我们表明,对于任何$λ\(0,1)$中的任何$λ\都存在一个常数$ n(λ)$,因此每个这样的表面至少具有$ \lceilλ\ cdot \ cdot \ cdot \ frac {2} {3} g \ rceil $ fromicalical $ fromicalical $ fromical $ fromical $ nepptionallicalicalical $ bps $ n(λ)$的长度独立循环这使我们能够在[MU]中扩展在[MU]中获得的恒定上限,这是在非零周期晶格载体的最小长度上,即几乎是$ \ frac {2} {3} g $线性独立的矢量。

Given a hyperelliptic hyperbolic surface $S$ of genus $g \geq 2$, we find bounds on the lengths of homologically independent loops on $S$. As a consequence, we show that for any $λ\in (0,1)$ there exists a constant $N(λ)$ such that every such surface has at least $\lceil λ\cdot \frac{2}{3} g \rceil$ homologically independent loops of length at most $N(λ)$, extending the result in [Mu] and [BPS]. This allows us to extend the constant upper bound obtained in [Mu] on the minimal length of non-zero period lattice vectors of hyperelliptic Riemann surfaces to almost $\frac{2}{3} g$ linearly independent vectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源