论文标题

混合有限元和材料点方法模拟颗粒柱从失败启动到跳动的崩溃

Hybrid Finite Element and Material Point Method to Simulate Granular Column Collapse from Failure Initiation to Runout

论文作者

Sordo, Brent, Rathje, Ellen, Kumar, Krishna

论文摘要

潜在不稳定斜率的性能评估涉及两个关键组成部分:斜率故障的启动和失败后的跳动。有限元方法(FEM)在建模不稳定性的启动方面出色,但由于网格失真而引起的大型形成问题,迅速失去了准确性。因此,FEM无法准确建模失败后斜率跳动。混合Eulerian-Lagrangian方法(例如材料点方法(MPM))提供了一种有希望的替代方案来解决大型信息问题,因为粒子可以在背景网格上自由移动,从而允许大变形而没有计算问题。但是,在MPM中使用移动材料点进行整合而不是FEM的固定高斯点降低了MPM在预测应力分布并因此启动失败时的准确性。我们通过在FEM中启动故障模拟,然后将坐标,速度和应力转移到MPM颗粒以模拟跳动行为,结合了这两种方法的强度,从而创建了一种混合方法。我们通过模拟摩擦方法的崩溃,将其与经验解决方案进行比较,并评估合适的时间通过在崩溃的不同阶段转移多个迭代,来评估合适的时间从FEM转移到MPM,从而证明了混合方法的能力。

The performance evaluation of a potentially unstable slope involves two key components: the initiation of the slope failure and the post-failure runout. The Finite Element Method (FEM) excels at modeling the initiation of instability but quickly loses accuracy in modeling large-deformation problems due to mesh distortion. Hence, the FEM is unable to accurately model post-failure slope runout. Hybrid Eulerian-Lagrangian methods, such as the Material Point Method (MPM), offer a promising alternative for solving large-deformation problems, because particles can move freely across a background mesh, allowing for large deformation without computational issues. However, the use of moving material points in MPM for integration rather than the fixed Gauss points of the FEM reduces the accuracy of MPM in predicting stress distribution and thus failure initiation. We have created a hybrid method by initiating a failure simulation in FEM and subsequently transferring the coordinates, velocities, and stresses to MPM particles to model the runout behavior, combining the strength of both methods. We demonstrate the capability of the hybrid approach by simulating the collapse of a frictional granular column, comparing it to an empirical solution, and evaluating a suitable time to transfer from FEM to MPM by trialing multiple iterations with transfers at different stages of the collapse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源