论文标题
优先考虑可以学习,值得学习且尚未学习的要点的培训
Prioritized Training on Points that are Learnable, Worth Learning, and Not Yet Learnt
论文作者
论文摘要
对网络规模数据进行培训可能需要几个月的时间。但是,大多数计算和时间都浪费在已经学习或无法学习的冗余和嘈杂点上。为了加速训练,我们引入了可减少的持有损失选择(Rho-loss),这是一种简单但原则上的技术,它大致选择了这些训练点,以最大程度地减少模型的概括损失。结果,Rho-loss减轻了现有数据选择方法的弱点:优化文献中的技术通常选择“硬损失”(例如,高损失),但是这种点通常是嘈杂的(不可学)或更少的任务相关的。相反,课程学习优先考虑“简单”的积分,但是一旦学习,就不必对这些要点进行培训。相比之下,Rho-Loss选择了可以学习的点,值得学习的,尚未学习。与先前的艺术相比,Rho-loss火车的步骤要少得多,可以提高准确性,并加快对广泛的数据集,超参数和体系结构(MLP,CNN和BERT)的培训。在大型Web的图像数据集服装1M上,与统一的数据改组相比,步骤少18倍,最终准确度的速度少2%。
Training on web-scale data can take months. But most computation and time is wasted on redundant and noisy points that are already learnt or not learnable. To accelerate training, we introduce Reducible Holdout Loss Selection (RHO-LOSS), a simple but principled technique which selects approximately those points for training that most reduce the model's generalization loss. As a result, RHO-LOSS mitigates the weaknesses of existing data selection methods: techniques from the optimization literature typically select 'hard' (e.g. high loss) points, but such points are often noisy (not learnable) or less task-relevant. Conversely, curriculum learning prioritizes 'easy' points, but such points need not be trained on once learned. In contrast, RHO-LOSS selects points that are learnable, worth learning, and not yet learnt. RHO-LOSS trains in far fewer steps than prior art, improves accuracy, and speeds up training on a wide range of datasets, hyperparameters, and architectures (MLPs, CNNs, and BERT). On the large web-scraped image dataset Clothing-1M, RHO-LOSS trains in 18x fewer steps and reaches 2% higher final accuracy than uniform data shuffling.