论文标题

RGB - 跨性匹配:数据集,学习方法,评估

RGB-Multispectral Matching: Dataset, Learning Methodology, Evaluation

论文作者

Tosi, Fabio, Ramirez, Pierluigi Zama, Poggi, Matteo, Salti, Samuele, Mattoccia, Stefano, Di Stefano, Luigi

论文摘要

我们通过求解立体声匹配对应关系来解决记录同步颜色(RGB)和多光谱(MS)图像的问题。我们故意介绍了一种新颖的RGB-MS数据集,在室内环境中框架13个不同的场景,并提供了以半密度,高分辨率高分辨率的地面标签注释的34个图像对,形式为差距图。为了解决这项任务,我们提出了一个深度学习架构,通过利用进一步的RGB摄像机,以自我监督的方式进行培训,这仅在培训数据获取过程中需要。在此设置中,我们可以在没有地面真相标签的情况下方便地学习跨模式匹配,通过将知识从更轻松的RGB-RGB匹配任务中提取,该任务基于约11K未标记的图像三重列表的集合。实验表明,提出的管道为这项小说,具有挑战性的任务进行研究,为将来的研究设置了一个良好的性能栏(1.16像素的平均注册错误)。

We address the problem of registering synchronized color (RGB) and multi-spectral (MS) images featuring very different resolution by solving stereo matching correspondences. Purposely, we introduce a novel RGB-MS dataset framing 13 different scenes in indoor environments and providing a total of 34 image pairs annotated with semi-dense, high-resolution ground-truth labels in the form of disparity maps. To tackle the task, we propose a deep learning architecture trained in a self-supervised manner by exploiting a further RGB camera, required only during training data acquisition. In this setup, we can conveniently learn cross-modal matching in the absence of ground-truth labels by distilling knowledge from an easier RGB-RGB matching task based on a collection of about 11K unlabeled image triplets. Experiments show that the proposed pipeline sets a good performance bar (1.16 pixels average registration error) for future research on this novel, challenging task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源