论文标题

来自特殊约旦背景和光谱三元的粒子模型

Particle models from special Jordan backgrounds and spectral triples

论文作者

Besnard, Fabien, Farnsworth, Shane

论文摘要

我们提出了基于约旦坐标代数的光谱三元组和代数背景的定义。我们还提出了波动的狄拉克运算符的天然和量规不变的骨配置空间,并将其计算为一般,几乎缔合的约旦,坐标代数。我们强调,即使坐标代数是$ c^*$ - 代数的自我伴侣部分,即使坐标为代数的一部分,也不等于通常的关联非共同几何形状。特别是,在约旦案例中,仪表场始终是单模型的,因此可以解决非交通性几何形状中的长期问题。

We put forward a definition for spectral triples and algebraic backgrounds based on Jordan coordinate algebras. We also propose natural and gauge-invariant bosonic configuration spaces of fluctuated Dirac operators and compute them for general, almost-associative, Jordan, coordinate algebras. We emphasize that the theory so obtained is not equivalent with usual associative noncommutative geometry, even when the coordinate algebra is the self-adjoint part of a $C^*$-algebra. In particular, in the Jordan case, the gauge fields are always unimodular, thus curing a long-standing problem in noncommutative geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源