论文标题

Kerr Inspiral模型的椭圆形偏微分方程的新自我力量方法

New self-force method via elliptic partial differential equations for Kerr inspiral models

论文作者

Osburn, Thomas, Nishimura, Nami

论文摘要

我们提出了一种新方法,旨在避免数值挑战,这些挑战阻碍了洛伦兹仪表自力的计算,该计算作用于紧凑型物体,灵感来自Kerr Black Hole。这种类型的计算对于创建极端质量比率灵感的波形模板很有价值,这是即将到来的激光干涉仪空间天线任务的重力波的重要来源。先前的双曲部分偏微分方程(PDE)配方遇到的数值不稳定性涉及时间不受限制的增长;我们的新方法是基于椭圆形PDE的,该PDE并未表现出这种不稳定性。为了获得概念证明,我们计算出在Kerr Black Hole周围的圆形轨道上作用于标量电荷的自力。我们预计这种方法将随后促进一阶Lorenz仪表kerr度量扰动和自我训练的计算,这可以作为二阶Kerr自我调查的基础。

We present a new method designed to avoid numerical challenges that have impeded calculation of the Lorenz gauge self-force acting on a compact object inspiraling into a Kerr black hole. This type of calculation is valuable in creating waveform templates for extreme mass-ratio inspirals, which are an important source of gravitational waves for the upcoming Laser Interferometer Space Antenna mission. Prior hyperbolic partial differential equation (PDE) formulations encountered numerical instabilities involving unchecked growth in time; our new method is based on elliptic PDEs, which do not exhibit instabilities of that kind. For proof of concept, we calculate the self-force acting on a scalar charge in a circular orbit around a Kerr black hole. We anticipate this method will subsequently facilitate calculation of first-order Lorenz gauge Kerr metric perturbations and self-force, which could serve as a foundation for second-order Kerr self-force investigations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源