论文标题
傅立叶变换和整数同源性恢复
Fourier transforms and integer homology cobordism
论文作者
论文摘要
我们探索了Heegaard Floer $ d $ invariants的傅立叶变换,这在连接的总和方面尤为好。作为推论,我们表明镜头空间在3个manifolds的单体中是可以取消的,直到整数同源性恢复性,并且我们在亚历山大多种元素上恢复了González-Acuña的定理,并以还原的手术为单位。
We explore the Fourier transform of the Heegaard Floer $d$-invariants, which is particularly well-behaved with respect to connected sum. As corollaries, we show that lens spaces are cancellable in the monoid of 3-manifolds up to integer homology cobordism, and we recover a theorem of González-Acuña--Short on Alexander polynomials of knots with reducible surgeries.