论文标题
血管流体结构的相互作用:统一的连续公式,基于图像的网格生成管道和可扩展的完全隐式求解器技术
Vascular fluid-structure interaction: unified continuum formulation, image-based mesh generation pipeline, and scalable fully implicit solver technology
论文作者
论文摘要
我们提出了一个用于血管流体结构相互作用(FSI)的计算框架,重点是生物力学建模,几何建模和求解器技术。生物力学模型是根据统一的连续公式构建的。我们强调,所选的时间集成方案与现有的隐式FSI集成方法不同,因为它确实是二阶准确的,不受过冲现象的折磨,并且在两个子问题中都可以最佳地消散高频模式。我们提出了一条管道,用于生成特定于主体的网格,以进行FSI分析,以进行解剖上现实的几何建模。与直接在壁表面网格上运行的大多数现有方法不同,我们的管道始于图像分割阶段。然后,在获得高质量的表面网格后,生成了体积的网格,确保流体子域中的边界层网和横跨流体固定界面的匹配网格。最后,我们提出了一组非线性和线性求解器技术的组合。在牛顿 - 拉夫森迭代中调用隔离算法,该问题减少了在多核能阶段求解两个线性系统。第一个线性系统可以通过代数多式(AMG)方法来解决。与平衡方程相关的矩阵呈现两个子问题中的两二个块结构。使用Schur补体还原(SCR)技术将问题降低到求解椭圆类型较小尺寸的矩阵,而AMG方法再次成为自然候选者。在将解决方案算法并行的情况下,统一公式的益处作为两个子域中未知数匹配的数量。我们使用Greenshields-Weller基准以及患者特异性的血管模型来证明整体FSI求解器技术的稳健性,效率和可扩展性。
We propose a computational framework for vascular fluid-structure interaction (FSI), focusing on biomechanical modeling, geometric modeling, and solver technology. The biomechanical model is constructed based on the unified continuum formulation. We highlight that the chosen time integration scheme differs from existing implicit FSI integration methods in that it is indeed second-order accurate, does not suffer from the overshoot phenomenon, and optimally dissipates high-frequency modes in both subproblems. We propose a pipeline for generating subject-specific meshes for FSI analysis for anatomically realistic geometric modeling. Unlike most existing methodologies that operate directly on the wall surface mesh, our pipeline starts from the image segmentation stage. With high-quality surface meshes obtained, the volumetric meshes are then generated, guaranteeing a boundary-layered mesh in the fluid subdomain and a matching mesh across the fluid-solid interface. In the last, we propose a combined suite of nonlinear and linear solver technologies. Invoking a segregated algorithm within the Newton-Raphson iteration, the problem reduces to solving two linear systems in the multi-corrector stage. The first linear system can be addressed by the algebraic multigrid (AMG) method. The matrix related to the balance equations presents a two-by-two block structure in both subproblems. Using the Schur complement reduction (SCR) technique reduces the problem to solving matrices of smaller sizes of the elliptic type, and the AMG method again becomes a natural candidate. The benefit of the unified formulation is demonstrated in parallelizing the solution algorithms as the number of unknowns matches in both subdomains. We use the Greenshields-Weller benchmark as well as a patient-specific vascular model to demonstrate the robustness, efficiency, and scalability of the overall FSI solver technology.