论文标题
关于迭代方案的融合,以求解方程的分段线性系统
On the convergence of iterative schemes for solving a piecewise linear system of equations
论文作者
论文摘要
本文致力于研究半平滑牛顿方法的全球和有限收敛,以解决在锥体约束的二次编程问题和绝对值方程中产生的分段线性系统。我们首先通过对牛顿迭代的全局和有限收敛的猜想来提供负面答案,以进行对称和积极的确定矩阵。此外,我们在低维度及其在更高维度中的行为中讨论了半平滑牛顿迭代的一些令人惊讶的特征。此外,我们提出了两个迭代方案,该方案灵感来自经典的Jacobi和高斯 - 塞德尔方法,用于为解决问题的方程式线性系统。我们研究了两种提出的程序的收敛条件,这也足以使解决方案的存在和独特性。最后,我们执行了一些计算实验,旨在说明所提出的迭代的行为(以CPU时间)与半平滑牛顿方法的行为,以解决密集和稀疏的大规模问题。
This paper is devoted to studying the global and finite convergence of the semi-smooth Newton method for solving a piecewise linear system that arises in cone-constrained quadratic programming problems and absolute value equations. We first provide a negative answer via a counterexample to a conjecture on the global and finite convergence of the Newton iteration for symmetric and positive definite matrices. Additionally, we discuss some surprising features of the semi-smooth Newton iteration in low dimensions and its behavior in higher dimensions. Moreover, we present two iterative schemes inspired by the classical Jacobi and Gauss-Seidel methods for linear systems of equations for finding a solution to the problem. We study sufficient conditions for the convergence of both proposed procedures, which are also sufficient for the existence and uniqueness of solutions to the problem. Lastly, we perform some computational experiments designed to illustrate the behavior (in terms of CPU time) of the proposed iterations versus the semi-smooth Newton method for dense and sparse large-scale problems.