论文标题

在宇宙学扰动理论中,量规固定和时空重建

Gauge-fixing and spacetime reconstruction in the Hamiltonian theory of cosmological perturbations

论文作者

Boldrin, Alice, Małkiewicz, Przemysław

论文摘要

我们开发了一种完全围绕任何空间均匀时期的扰动理论的哈密顿式方法。我们采用狄拉克方法来进行约束系统,这非常适合宇宙学扰动。我们通过运动相空间的所谓kucha \ vr参数化来完善该方法。我们将三个曲面的量规动力学与线性坐标转换引起的三个表面变形分开。在我们的方法中,三个表面变形的规范组和固定条件的完整空间是明确的。我们在固定条件的空间中介绍了一个框架,并使用它来大大简化量规,限定量规和时空重建的处方。最后,我们通过考虑扰动的Kasner宇宙来说明我们的方法,为此我们讨论了两种规模,它们分别对应于类似于库仑的电动力学中的库仑状和类似洛伦兹的仪表。

We develop a complete Hamiltonian approach to the theory of perturbations around any spatially homogeneous spacetime. We employ the Dirac method for constrained systems which is well-suited to cosmological perturbations. We refine the method via the so-called Kucha\vr parametrization of the kinematical phase space. We separate the gauge-invariant dynamics of the three-surfaces from the three-surface deformations induced by linear coordinate transformations. The canonical group of the three-surface deformations and the complete space of gauge-fixing conditions are explicit in our approach. We introduce a frame in the space of gauge-fixing conditions and use it to considerably simplify the prescription for gauge-fixing, partial gauge-fixing and spacetime reconstruction. Finally, we illustrate our approach by considering the perturbed Kasner universe, for which we discuss two kinds of gauges that correspond respectively to the Coulomb-like and the Lorenz-like gauge in electrodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源