论文标题

红外小目标检测和分段的多任务框架

A Multi-task Framework for Infrared Small Target Detection and Segmentation

论文作者

Chen, Yuhang, Li, Liyuan, Liu, Xin, Su, Xiaofeng, Chen, Fansheng

论文摘要

由于红外图像的背景和噪音复杂,红外小目标检测是计算机视觉领域中最困难的问题之一。在大多数现有研究中,语义分割方法通常用于取得更好的结果。每个目标的质心是根据分割图作为检测结果计算得出的。相比之下,我们提出了一个新颖的端到端框架,用于本文中红外的小目标检测和分割。首先,通过将UNET用作保持分辨率和语义信息的主链,我们的模型可以通过附加简单的无锚头来实现比其他最先进方法更高的检测精度。然后,使用金字塔池模块来进一步提取特征并提高目标分割的精度。接下来,我们使用语义分割任务,这些任务更加关注像素级特征,以帮助对象检测的训练过程,从而提高了平均精度,并允许模型检测一些以前无法检测到的目标。此外,我们开发了用于红外小目标检测和分割的多任务框架。与复合单任务模型相比,我们的多任务学习模型将复杂性降低了近一半,并且在保持准确性的同时,将其加快推断近两次。代码和模型可在https://github.com/chenastron/mtunet上公开获取。

Due to the complicated background and noise of infrared images, infrared small target detection is one of the most difficult problems in the field of computer vision. In most existing studies, semantic segmentation methods are typically used to achieve better results. The centroid of each target is calculated from the segmentation map as the detection result. In contrast, we propose a novel end-to-end framework for infrared small target detection and segmentation in this paper. First, with the use of UNet as the backbone to maintain resolution and semantic information, our model can achieve a higher detection accuracy than other state-of-the-art methods by attaching a simple anchor-free head. Then, a pyramid pool module is used to further extract features and improve the precision of target segmentation. Next, we use semantic segmentation tasks that pay more attention to pixel-level features to assist in the training process of object detection, which increases the average precision and allows the model to detect some targets that were previously not detectable. Furthermore, we develop a multi-task framework for infrared small target detection and segmentation. Our multi-task learning model reduces complexity by nearly half and speeds up inference by nearly twice compared to the composite single-task model, while maintaining accuracy. The code and models are publicly available at https://github.com/Chenastron/MTUNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源