论文标题
质子疗法的非离子现象学相对生物学有效性(RBE)模型
An ion-independent phenomenological relative biological effectiveness (RBE) model for proton therapy
论文作者
论文摘要
背景:尽管提出了不同RBE的临床证据,但使用了1.1的相对生物学有效性(RBE)。几十年来,碳辐射已经进行了RBE变异性的临床研究,这可以提高对临床质子RBE的理解。在这项工作中,使用光束数量q = z^2/e(z =离子电荷,e =每个核子的动能)进行了线性和简单的模型,并与常用的,质子特异性和线性和线性和线性的能量转移(LET)基于Wedenberg RBE模型进行了比较。材料和方法:通过离子依赖性和预测能力进行比较,比较了RBEMAX和RBEMIN(即分别为消失和非常高剂量的RBE)的Wedenberg和Q模型。涵盖115个离子出版物的实验性视频数据集合被用作数据集。结果:观察到Q模型的模型参数对于不同离子的模型相似(与LET相反)。对Q模型进行了培训,没有任何先验质子数据的知识。对于质子RBE,实验数据与Wedenberg或Q模型的相应预测之间的差异高度可比。结论:提出了一个简单的线性RBE模型,而不是让Q而不是让测试,以便能够使用仅基于临床质子能量范围内其他粒子的RBE数据训练的模型参数来预测质子RBE。因此,从碳离子治疗增加(前)临床知识可能会减少质子RBE建模的主导生物学不确定性。这将转化为质子治疗计划中RBE相关的不确定性减少。
Background: A relative biological effectiveness (RBE) of 1.1 is used for proton therapy though clinical evidence of varying RBE was raised. Clinical studies on RBE variability have been conducted for decades for carbon radiation, which could advance the understanding of the clinical proton RBE given an ion-independent RBE model. In this work, such a model, linear and simple, using the beam quantity Q = Z^2/E (Z = ion charge, E = kinetic energy per nucleon) was tested and compared to the commonly used, proton-specific and linear energy transfer (LET) based Wedenberg RBE model. Material and methods: The Wedenberg and Q models, both predicting RBEmax and RBEmin (i.e., RBE at vanishing and very high dose, respectively), are compared in terms of ion-dependence and prediction power. An experimental in-vitro data ensemble covering 115 publications for various ions was used as dataset. Results: The model parameter of the Q model was observed to be similar for different ions (in contrast to LET). The Q model was trained without any prior knowledge of proton data. For proton RBE, the differences between experimental data and corresponding predictions of the Wedenberg or the Q model were highly comparable. Conclusions: A simple linear RBE model using Q instead of LET was proposed and tested to be able to predict proton RBE using model parameter trained based on only RBE data of other particles in a clinical proton energy range for a large in-vitro dataset. Adding (pre)clinical knowledge from carbon ion therapy may, therefore, reduce the dominating biological uncertainty in proton RBE modelling. This would translate in reduced RBE related uncertainty in proton therapy treatment planning.