论文标题

部分可观测时空混沌系统的无模型预测

Ultra-High-Precision Detection of Single Microwave Photons based on a Hybrid System between Majorana Zero Mode and a Quantum Dot

论文作者

Chatterjee, Eric, Pan, Wei, Soh, Daniel

论文摘要

由于基于光子的量子计算的增加,检测单个光子的能力已变得越来越重要。在这项理论工作中,我们提出了一个由量子点(QD)侧耦合到超导纳米线组成的系统。耦合在QD模式和纳米线边缘的Majorana零模式(MZM)中均打开差距,从而使系统中的光子吸收能够吸收。我们表明,被吸收的光电子通过快速(纳米秒至纳米秒)非授权热传递到纳米线声子模式而不是通过自发发射而衰减。此外,我们计算给定适当的材料和环境参数的光子吸收引起的温度升高和相关的电阻升高,从而使Millikelvin范围的温度升高以及kiloohm范围的电阻增加,大大超过了光子吸收诱导的温度,并增加了竞争的2D-3D系统,并提高了竞争量和9型系统。最后,我们确定探测器效率并讨论确定性光子数测量所需的系统密度,这表明可以实现由纳米瓦尔QD阵列组成的集成系统,可以实现超过99.9%的光子吸收概率。因此,我们的结果为确定性微波光子数量检测器提供了前所未有的光子划分分辨率的基础。

The ability to detect single photons has become increasingly essential due to the rise of photon-based quantum computing. In this theoretical work, we propose a system consisting of a quantum dot (QD) side-coupled to a superconducting nanowire. The coupling opens a gap in both the QD mode and the Majorana zero mode (MZM) at the nanowire edge, enabling photon absorption in the system. We show that the absorbed photoelectron decays via rapid (sub-nanosecond to nanosecond) nonradiative heat transfer to the nanowire phonon modes rather than by spontaneous emission. Furthermore, we calculate the temperature increase and associated resistance increase induced by the absorption of a photon for a given appropriate set of material and environmental parameters, yielding a temperature increase in the millikelvin range and a resistance increase in the kiloohm range, vastly exceeding the photon-absorption-induced temperature and resistance increases for competing 2D-3D hybrid systems by 5 and 9 orders of magnitude, respectively. Lastly, we determine the detector efficiency and discuss the system density required for deterministic photon number measurement, demonstrating that a photon absorption probability of over 99.9 percent can be achieved for an integrated system consisting of an array of nanowire-QD complexes on-chip inside a cavity. Our results thus provide a basis for a deterministic microwave photon number detector with an unprecedented photon-number-detection resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源