论文标题

估计图像下的因果效应,使偏见与非洲贫困的应用

Estimating Causal Effects Under Image Confounding Bias with an Application to Poverty in Africa

论文作者

Jerzak, Connor T., Johansson, Fredrik, Daoud, Adel

论文摘要

因果影响的观察性研究需要调整混杂因素。在表格环境中,这些因素定义明确,单独的随机变量,人们可以很好地理解混淆的效果。但是,在公共政策,生态学和医学中,决策通常是在非尾部环境中做出的,这些设置由图像中检测到的模式或对象(例如,地图,卫星或层析成像图像)所告知。使用此类图像进行因果推理会带来机会,因为图像中的对象可能与感兴趣的治疗和结果有关。在这些情况下,我们依靠图像来调整混淆,但观察到的数据并未直接标记重要对象的存在。在现实世界应用的推动下,我们正式化了这一挑战,如何处理,以及哪些条件足以识别和估计因果关系。我们使用仿真实验分析有限样本的性能,并使用采用机器学习模型来估计图像混淆的倾向调整算法来估算效果。我们的实验还检查了对图像模式机制错误指定的敏感性。最后,我们使用我们的方法来估计卫星图像中政策干预对非洲社区贫困的影响。

Observational studies of causal effects require adjustment for confounding factors. In the tabular setting, where these factors are well-defined, separate random variables, the effect of confounding is well understood. However, in public policy, ecology, and in medicine, decisions are often made in non-tabular settings, informed by patterns or objects detected in images (e.g., maps, satellite or tomography imagery). Using such imagery for causal inference presents an opportunity because objects in the image may be related to the treatment and outcome of interest. In these cases, we rely on the images to adjust for confounding but observed data do not directly label the existence of the important objects. Motivated by real-world applications, we formalize this challenge, how it can be handled, and what conditions are sufficient to identify and estimate causal effects. We analyze finite-sample performance using simulation experiments, estimating effects using a propensity adjustment algorithm that employs a machine learning model to estimate the image confounding. Our experiments also examine sensitivity to misspecification of the image pattern mechanism. Finally, we use our methodology to estimate the effects of policy interventions on poverty in African communities from satellite imagery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源