论文标题

联邦贝叶斯神经回归:可扩展的全球联合高斯过程

Federated Bayesian Neural Regression: A Scalable Global Federated Gaussian Process

论文作者

Yu, Haolin, Guo, Kaiyang, Karami, Mahdi, Chen, Xi, Zhang, Guojun, Poupart, Pascal

论文摘要

在适用联合学习(FL)框架的典型情况下,客户常见的是没有足够的培训数据来产生准确的模型。因此,不仅提供点估计的模型,而且提供一些信心概念是有益的。高斯工艺(GP)是一种强大的贝叶斯模型,随着自然校准的差异估计。但是,学习独立的全球GP是一项挑战,因为合并本地内核会导致隐私泄漏。为了保留隐私,以前考虑联合GPS的先前作品避免通过专注于个性化设置或学习本地模型的合奏来学习全球模型。我们提出了联邦贝叶斯神经回归(FEDBNR),这是一种算法,该算法学习了可扩展的独立全球联合GP,尊重客户的隐私。我们通过定义统一的随机内核来结合深内核学习和随机特征,以进行可伸缩。我们显示,随机内核可以恢复任何固定的内核和许多非平稳核。然后,我们得出了学习全局预测模型的原则方法,就像所有客户数据都集中一样。我们还通过知识蒸馏方法学习全球内核,用于非相同和独立分布(非I.I.D。)客户。与其他联合GP模型相比,在现实世界回归数据集上进行了实验,并显示出统计学上的显着改善。

In typical scenarios where the Federated Learning (FL) framework applies, it is common for clients to have insufficient training data to produce an accurate model. Thus, models that provide not only point estimations, but also some notion of confidence are beneficial. Gaussian Process (GP) is a powerful Bayesian model that comes with naturally well-calibrated variance estimations. However, it is challenging to learn a stand-alone global GP since merging local kernels leads to privacy leakage. To preserve privacy, previous works that consider federated GPs avoid learning a global model by focusing on the personalized setting or learning an ensemble of local models. We present Federated Bayesian Neural Regression (FedBNR), an algorithm that learns a scalable stand-alone global federated GP that respects clients' privacy. We incorporate deep kernel learning and random features for scalability by defining a unifying random kernel. We show this random kernel can recover any stationary kernel and many non-stationary kernels. We then derive a principled approach of learning a global predictive model as if all client data is centralized. We also learn global kernels with knowledge distillation methods for non-identically and independently distributed (non-i.i.d.) clients. Experiments are conducted on real-world regression datasets and show statistically significant improvements compared to other federated GP models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源