论文标题

耗散相变处超导式振荡振荡器的量子行为

Quantum behavior of a superconducting Duffing oscillator at the dissipative phase transition

论文作者

Chen, Qi-Ming, Fischer, Michael, Nojiri, Yuki, Renger, Michael, Xie, Edwar, Partanen, Matti, Pogorzalek, Stefan, Fedorov, Kirill G., Marx, Achim, Deppe, Frank, Gross, Rudolf

论文摘要

自从洛伦兹(Lorenz)称其为“蝴蝶效应”以来,了解确定性非线性系统的非确定性行为一直是一个隐含的梦想。一个突出的例子是行李振荡器的滞后和双重性,在经典描述中,这归因于两个稳态在双孔电势中的共存。但是,这种解释在量子力学的角度上失败,在整个参数空间中允许单个唯一的稳态。在这里,我们测量了超导振荡振荡器的非平衡动力学,并在统一的量子放标图中调和经典和量子描述。我们证明,两个经典认为的稳态实际上是亚稳态的状态。在经典的滞后状态下,它们的寿命非常长,但最终必须放松成量子力学允许的单个独特的稳态。通过工程化亚稳态状态的寿命足够大,我们观察到了一阶耗散相变,该相位模仿了11个位点的Bose-Hubbard晶格中平均场的突然变化。我们还通过量子状态断层扫描揭示了过渡的两个不同阶段,即连贯状态相和一个被临界点隔开的挤压状态相。我们的结果揭示了突然耗散相变的平稳量子状态演变,它们构成了了解非平衡系统中磁滞和不稳定性的重要步骤。

Understanding the non-deterministic behavior of deterministic nonlinear systems has been an implicit dream since Lorenz named it the "butterfly effect". A prominent example is the hysteresis and bistability of the Duffing oscillator, which in the classical description is attributed to the coexistence of two steady states in a double-well potential. However, this interpretation fails in the quantum-mechanical perspective, where a single unique steady state is allowed in the whole parameter space. Here, we measure the non-equilibrium dynamics of a superconducting Duffing oscillator and reconcile the classical and quantum descriptions in a unified picture of quantum metastability. We demonstrate that the two classically regarded steady states are in fact metastable states. They have a remarkably long lifetime in the classical hysteresis regime but must eventually relax into a single unique steady state allowed by quantum mechanics. By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition, which mimics a sudden change of the mean field in a 11-site Bose-Hubbard lattice. We also reveal the two distinct phases of the transition by quantum state tomography, namely a coherent-state phase and a squeezed-state phase separated by a critical point. Our results reveal a smooth quantum state evolution behind a sudden dissipative phase transition, and they form an essential step towards understanding hysteresis and instability in non-equilibrium systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源