论文标题
具有多个内核扩张卷积网络的自动息肉细分
Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution Network
论文作者
论文摘要
通过结肠镜检查检测和去除癌前息肉是预防全球结直肠癌的主要技术。但是,内镜医生的结直肠息肉率差异很大。众所周知,计算机辅助诊断(CAD)系统可以帮助内镜医生检测结肠息肉并最大程度地减少内镜医生之间的变化。在这项研究中,我们介绍了一种新型的深度学习体系结构,名为MKDCNET,以自动息肉分割可靠,以重大变化息肉数据分布。 MKDCNET只是一个编码器decoder神经网络,它使用预先训练的RESNET50作为编码器和新型多核扩张卷积(MKDC)块,该卷积(MKDC)块,它扩展了视野以学习更多强大和异质表示。对四个公开息肉数据集和细胞核数据集进行的广泛实验表明,当在同一数据集中训练和测试时,提出的MKDCNET在从不同分布的未看到的息肉数据集上进行测试时,在同一数据集上进行了训练和测试。取得丰富的结果,我们证明了拟议的建筑的鲁棒性。从效率的角度来看,我们的算法可以在RTX 3090 GPU上以(约45)帧进行处理。 MKDCNET可能是建造临床结肠镜检查实时系统的强大基准。建议的MKDCNET的代码可在https://github.com/nikhilroxtomar/mkdcnet上获得。
The detection and removal of precancerous polyps through colonoscopy is the primary technique for the prevention of colorectal cancer worldwide. However, the miss rate of colorectal polyp varies significantly among the endoscopists. It is well known that a computer-aided diagnosis (CAD) system can assist endoscopists in detecting colon polyps and minimize the variation among endoscopists. In this study, we introduce a novel deep learning architecture, named MKDCNet, for automatic polyp segmentation robust to significant changes in polyp data distribution. MKDCNet is simply an encoder-decoder neural network that uses the pre-trained ResNet50 as the encoder and novel multiple kernel dilated convolution (MKDC) block that expands the field of view to learn more robust and heterogeneous representation. Extensive experiments on four publicly available polyp datasets and cell nuclei dataset show that the proposed MKDCNet outperforms the state-of-the-art methods when trained and tested on the same dataset as well when tested on unseen polyp datasets from different distributions. With rich results, we demonstrated the robustness of the proposed architecture. From an efficiency perspective, our algorithm can process at (approx 45) frames per second on RTX 3090 GPU. MKDCNet can be a strong benchmark for building real-time systems for clinical colonoscopies. The code of the proposed MKDCNet is available at https://github.com/nikhilroxtomar/MKDCNet.