论文标题
用于空中操纵和栖息的模块化连续操作机
A Modular Continuum Manipulator for Aerial Manipulation and Perching
论文作者
论文摘要
大多数空中操纵器都使用串行刚性链接设计,在操纵过程中启动接触时会导致大力,并可能导致飞行稳定性难度。连续操作器的遵守情况可能会改善这种限制。为了实现这一目标,我们介绍了空中无人机的紧凑,轻巧和模块化电缆驱动的连续操作的新颖设计。然后,我们为其运动学,静电和刚度(合规性)得出一个完整的建模框架。该框架对于将操纵器集成到空中无人机至关重要。最后,我们报告了硬件原型的初步实验验证,从而提供了有关其操纵可行性的见解。未来的工作包括对拟议的连续操作机与空中无人机的集成和测试。
Most aerial manipulators use serial rigid-link designs, which results in large forces when initiating contacts during manipulation and could cause flight stability difficulty. This limitation could potentially be improved by the compliance of continuum manipulators. To achieve this goal, we present the novel design of a compact, lightweight, and modular cable-driven continuum manipulator for aerial drones. We then derive a complete modeling framework for its kinematics, statics, and stiffness (compliance). The framework is essential for integrating the manipulator to aerial drones. Finally, we report preliminary experimental validations of the hardware prototype, providing insights on its manipulation feasibility. Future work includes the integration and test of the proposed continuum manipulator with aerial drones.