论文标题

无监督域适应时间序列的对比度学习

Contrastive Learning for Unsupervised Domain Adaptation of Time Series

论文作者

Ozyurt, Yilmazcan, Feuerriegel, Stefan, Zhang, Ce

论文摘要

无监督的域适应性(UDA)旨在使用标记的源域学习机器学习模型,该标记的源域在类似但不同的未标记的目标域上表现良好。 UDA在许多应用(例如医学)中很重要,在医学上,它用于适应不同患者同类的风险评分。在本文中,我们为时间序列数据的UDA开发了一个新颖的框架,称为Cluda。具体来说,我们提出了一个对比度学习框架,以学习多元时间序列中的上下文表示,以便为预测任务保留标签信息。在我们的框架中,我们通过自定义的最近邻居对比学习进一步捕获源和目标域之间上下文表示的变化。据我们所知,我们的第一个框架是学习时间序列数据UDA的域不变,上下文表示。我们使用广泛的时间序列数据集评估我们的框架,以证明其有效性,并表明它可以实现时间序列UDA的最新性能。

Unsupervised domain adaptation (UDA) aims at learning a machine learning model using a labeled source domain that performs well on a similar yet different, unlabeled target domain. UDA is important in many applications such as medicine, where it is used to adapt risk scores across different patient cohorts. In this paper, we develop a novel framework for UDA of time series data, called CLUDA. Specifically, we propose a contrastive learning framework to learn contextual representations in multivariate time series, so that these preserve label information for the prediction task. In our framework, we further capture the variation in the contextual representations between source and target domain via a custom nearest-neighbor contrastive learning. To the best of our knowledge, ours is the first framework to learn domain-invariant, contextual representation for UDA of time series data. We evaluate our framework using a wide range of time series datasets to demonstrate its effectiveness and show that it achieves state-of-the-art performance for time series UDA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源