论文标题

Transrec:从模式反馈的混合物中学习可转移的建议

TransRec: Learning Transferable Recommendation from Mixture-of-Modality Feedback

论文作者

Wang, Jie, Yuan, Fajie, Cheng, Mingyue, Jose, Joemon M., Yu, Chenyun, Kong, Beibei, He, Xiangnan, Wang, Zhijin, Hu, Bo, Li, Zang

论文摘要

在广泛的数据上学习大规模的预训练模型,然后转移到广泛的目标任务已成为许多机器学习(ML)社区的事实上的范式。这样的大型模型不仅在实践中表现出色,而且还提供了一种有希望的方法来摆脱特定于任务的建模限制,从而实现了任务不合时宜的和统一的ML系统。但是,如此受欢迎的范式主要是由推荐系统(RS)社区探索的。一个关键问题是,标准建议模型主要建立在分类身份特征上。也就是说,用户和交互的项目以其唯一ID表示,这些ID通常在不同的系统或平台之间不可共享。为了追求可转移的建议,我们建议在新的情况下研究预训练的RS模型,其中用户的交互反馈涉及模式(MOM)项目,例如文本和图像。然后,我们提出Transrec,这是对流行的基于ID的RS框架进行的非常简单的修改。 Transrec以端到端的培训方式直接从妈妈项目的原始功能中学习,因此可以在各种情况下进行有效的转移学习,而无需依赖重叠的用户或项目。我们从经验上研究了Trress在四个不同的现实推荐设置中的转移能力。此外,我们通过扩展源和目标数据大小来研究其效果。我们的结果表明,从妈妈反馈中学习神经推荐模型为实现普遍RS提供了有希望的方法。

Learning large-scale pre-trained models on broad-ranging data and then transfer to a wide range of target tasks has become the de facto paradigm in many machine learning (ML) communities. Such big models are not only strong performers in practice but also offer a promising way to break out of the task-specific modeling restrictions, thereby enabling task-agnostic and unified ML systems. However, such a popular paradigm is mainly unexplored by the recommender systems (RS) community. A critical issue is that standard recommendation models are primarily built on categorical identity features. That is, the users and the interacted items are represented by their unique IDs, which are generally not shareable across different systems or platforms. To pursue the transferable recommendations, we propose studying pre-trained RS models in a novel scenario where a user's interaction feedback involves a mixture-of-modality (MoM) items, e.g., text and images. We then present TransRec, a very simple modification made on the popular ID-based RS framework. TransRec learns directly from the raw features of the MoM items in an end-to-end training manner and thus enables effective transfer learning under various scenarios without relying on overlapped users or items. We empirically study the transferring ability of TransRec across four different real-world recommendation settings. Besides, we look at its effects by scaling source and target data size. Our results suggest that learning neural recommendation models from MoM feedback provides a promising way to realize universal RS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源