论文标题
霍克斯过程中的因果发现最小描述长度
Causal Discovery in Hawkes Processes by Minimum Description Length
论文作者
论文摘要
霍克斯过程是一种特殊的时间点过程,表现出自然的因果关系概念,因为过去事件的发生可能会增加未来事件的可能性。在多维时间过程的维度之间发现潜在影响网络在学科中非常重要,在这些学科中,高频数据将建模,例如在财务数据或地震数据中。本文解决了在多维鹰队过程中学习Granger-Causal网络的问题。我们将此问题提出为模型选择任务,其中我们遵循最小描述长度(MDL)原理。此外,我们使用蒙特卡洛方法提出了一种用于基于MDL的推理的一般算法,并将其用于因果发现问题。我们将算法与合成和现实世界财务数据的最新基线方法进行了比较。合成实验表明,与基线方法相比,与数据尺寸相比,我们方法不可能的图形发现的优势。 G-7债券价格数据的实验结果与专家知识一致。
Hawkes processes are a special class of temporal point processes which exhibit a natural notion of causality, as occurrence of events in the past may increase the probability of events in the future. Discovery of the underlying influence network among the dimensions of multi-dimensional temporal processes is of high importance in disciplines where a high-frequency data is to model, e.g. in financial data or in seismological data. This paper approaches the problem of learning Granger-causal network in multi-dimensional Hawkes processes. We formulate this problem as a model selection task in which we follow the minimum description length (MDL) principle. Moreover, we propose a general algorithm for MDL-based inference using a Monte-Carlo method and we use it for our causal discovery problem. We compare our algorithm with the state-of-the-art baseline methods on synthetic and real-world financial data. The synthetic experiments demonstrate superiority of our method incausal graph discovery compared to the baseline methods with respect to the size of the data. The results of experiments with the G-7 bonds price data are consistent with the experts knowledge.