论文标题
使用模型复杂性优化和循环状态识别扩展过程发现:应用于医疗保健过程
Extending Process Discovery with Model Complexity Optimization and Cyclic States Identification: Application to Healthcare Processes
论文作者
论文摘要
在过程挖掘中,发现技术使从事件日志自动构建业务流程模型成为可能。但是,结果通常无法达到模型复杂性及其拟合精度之间的平衡,因此需要进行手动模型调整。该论文提出了一种方法开采的方法,该方法基于模型复杂性和适应性的组合评估为模型优化提供半自动支持。为了在两种成分之间取得平衡,提出了一种模型简化方法,该方法基本上在所需的粒度下抽象了原始模型。此外,我们介绍了元国家的概念,该元素在模型中崩溃了,该循环可能会简化模型并解释模型。我们旨在使用来自医疗保健领域不同应用程序的三个数据集证明技术解决方案的功能。它们是针对COVID-19大流行期间动脉高血压和医疗保健工作人员工作流动的患者的远程监测过程。案例研究还调查了使用各种复杂性度量和解决方案应用方式的使用,从而提供了有关改善过程模型中改善可解释性和复杂性/健身平衡的更好实践的见解。
Within Process mining, discovery techniques had made it possible to construct business process models automatically from event logs. However, results often do not achieve the balance between model complexity and its fitting accuracy, so there is a need for manual model adjusting. The paper presents an approach to process mining providing semi-automatic support to model optimization based on the combined assessment of the model complexity and fitness. To balance between the two ingredients, a model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity. Additionally, we introduce a concept of meta-states, a cycle collapsing in the model, which can potentially simplify the model and interpret it. We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain. They are remote monitoring process for patients with arterial hypertension and workflows of healthcare workers during the COVID-19 pandemic. A case study also investigates the use of various complexity measures and different ways of solution application providing insights on better practices in improving interpretability and complexity/fitness balance in process models.