论文标题

指定和测试机器学习模型的$ K $ -SAFETY属性

Specifying and Testing $k$-Safety Properties for Machine-Learning Models

论文作者

Christakis, Maria, Eniser, Hasan Ferit, Hoffmann, Jörg, Singla, Adish, Wüstholz, Valentin

论文摘要

机器学习模型在我们的生活中越来越普遍,例如协助图像分类或决策任务。因此,这些模型的可靠性至关重要,并导致开发了许多方法来验证和验证其稳健性和公平性。但是,除了这样的特定属性之外,要指定模型的一般功能校正期望,更不用说检查了一般的功能校正。在本文中,我们从正式方法中使用的规格中汲取灵感,通过推理约$ k $不同的执行,即所谓的$ k $ -safety属性来表达功能校正属性。考虑到银行的信用筛查模型,“如果某人被拒绝贷款并减少其收入,则仍应被拒绝贷款”,这是一个2支安全财产。在这里,我们显示了用于机器学习模型的$ K $ - 安全性属性的广泛适用性,并介绍了表达它们的第一个规范语言。我们还在使用变质测试自动验证此类属性的框架中操作该语言。我们的实验表明,我们的框架有效地识别违反财产的行为,并且可以使用检测到的错误来训练更好的模型。

Machine-learning models are becoming increasingly prevalent in our lives, for instance assisting in image-classification or decision-making tasks. Consequently, the reliability of these models is of critical importance and has resulted in the development of numerous approaches for validating and verifying their robustness and fairness. However, beyond such specific properties, it is challenging to specify, let alone check, general functional-correctness expectations from models. In this paper, we take inspiration from specifications used in formal methods, expressing functional-correctness properties by reasoning about $k$ different executions, so-called $k$-safety properties. Considering a credit-screening model of a bank, the expected property that "if a person is denied a loan and their income decreases, they should still be denied the loan" is a 2-safety property. Here, we show the wide applicability of $k$-safety properties for machine-learning models and present the first specification language for expressing them. We also operationalize the language in a framework for automatically validating such properties using metamorphic testing. Our experiments show that our framework is effective in identifying property violations, and that detected bugs could be used to train better models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源