论文标题
R3中的抛物线最小表面与每个非纤维嵌入的最小曲率表面相交
A parabolic minimal surface in R3 intersects every nonflat properly embedded minimal surface of bounded curvature
论文作者
论文摘要
我们表明,非恒定的保形和谐波映射$ \ mathbb c \ to \ mathbb r^3 $,不一定是正确的,并且可能与分支点相交,将每个正确嵌入的非纤维曲率表面与$ \ Mathbb r^3 $相交。如果$ \ MATHBB C $被任何开放的共形表面取代,则相同的情况下也容纳相同的情况。
We show that the image of a nonconstant conformal harmonic map $\mathbb C\to \mathbb R^3$, not necessarily proper and possibly with branch points, intersects every properly embedded nonflat minimal surface of bounded curvature in $\mathbb R^3$. The same holds if $\mathbb C$ is replaced by any open conformal surface without nonconstant bounded subharmonic functions.