论文标题
部分可观测时空混沌系统的无模型预测
Deep learning of interfacial curvature: a symmetry-preserving approach for the volume of fluid method
论文作者
论文摘要
Estimation of interface curvature in surface-tension dominated flows is a remaining challenge in Volume of Fluid (VOF) methods.最近,数据驱动的方法是该领域中有前途的替代方法。 They outperform conventional methods on coarser grids but diverge with grid refinement.此外,与常规方法不同,数据驱动的方法对坐标系和签名约定敏感,因此通常无法捕获接口中的基本对称模式。本工作提出了一种新的数据驱动策略,该策略以具有成本效益的方式来保护对称性,并在广泛的网格中提供一致的结果。该方法基于具有深层多层感知器(MLP)体系结构的人工神经网络,该架构在常规网格上读取体积分数字段。通过使用具有输入归一化,奇数激活功能和无偏见神经元的神经网络模型,可以保留抗对称性,而无需额外的成本。对称性通过高度功能启发的旋转和平均几个不同方向的平均而进一步保存。新的对称性传播MLP模型被实现为流量求解器(OpenFOAM),并针对文献中的常规方案进行了测试。与标准对应物相比,它表现出卓越的性能,尽管使用较小的模板,但与最先进的常规方法具有相似的精度和收敛性。
Estimation of interface curvature in surface-tension dominated flows is a remaining challenge in Volume of Fluid (VOF) methods. Data-driven methods are recently emerging as a promising alternative in this domain. They outperform conventional methods on coarser grids but diverge with grid refinement. Furthermore, unlike conventional methods, data-driven methods are sensitive to coordinate system and sign conventions, thus often fail to capture basic symmetry patterns in interfaces. The present work proposes a new data-driven strategy which conserves the symmetries in a cost-effective way and delivers consistent results over a wide range of grids. The method is based on artificial neural networks with deep multilayer perceptron (MLP) architecture which read volume fraction fields on regular grids. The anti-symmetries are preserved with no additional cost by employing a neural network model with input normalization, odd-symmetric activation functions and bias-free neurons. The symmetries are further conserved by height-function inspired rotations and averaging over several different orientations. The new symmetry-preserving MLP model is implemented into a flow solver (OpenFOAM) and tested against conventional schemes in the literature. It shows superior performance compared to its standard counterpart and has similar accuracy and convergence properties with the state-of-the-art conventional method despite using smaller stencil.