论文标题
整数和分数量子霍尔电导的统一非交互电子理论
A unified non-interacting-electron theory of the integer and fractional quantum Hall conductance
论文作者
论文摘要
我们通过考虑仪表对称性的完整三维性质,将劳林论点推广到非相互作用的二维电子的整数量子厅效应。这自然会导致对量子大厅效应的主要实验结果的预测,包括整数和分数值以及量化霍尔电导的平稳宽度。该方法以基本方式包括自旋的影响,允许对单电子和库珀对的描述。统一分析不需要引入密切相关的多粒子状态,也不需要引入障碍的关键作用,而是阐明了维数,对称性和量子行为之间的深刻联系。
We generalize the Laughlin argument for the integer quantum Hall effect of non-interacting two-dimensional electrons by taking into account the full three-dimensional nature of gauge symmetry. This naturally leads to the prediction of the principal experimental results on the quantum Hall effect, including the integer and fractional values and plateau widths of quantized Hall conductance. The approach includes, in a fundamental way, the influence of spin, allowing the description of both single electrons and Cooper pairs. Not requiring the introduction of strongly correlated multi-particle states nor a key role for disorder, the unified analysis sheds light on the profound connection between dimensionality, symmetry, and quantum behavior.