论文标题
基于同步振荡器的计算模型用于解决组合优化问题
Computational Models based on Synchronized Oscillators for Solving Combinatorial Optimization Problems
论文作者
论文摘要
动态系统中能量的自然最小化与表征组合优化问题的目标函数的最小化之间的等效性为设计动态系统启发的计算模型和解决方案提供了一种有希望的方法。例如,在第二次谐波注入下,耦合电子振荡器的基态能可以直接映射到最大切割问题的最佳解决方案。但是,先前的工作集中在有限的一组此类问题上。因此,在这项工作中,我们根据同步振荡器动力学制定计算模型,以提供各种组合优化问题,从最大速率(最大切割问题的一般版本)到旅行推销员问题。我们表明,可以通过适当设计耦合函数和向振荡器的外部注入来设计同步振荡器动力学来解决这些不同的组合优化问题。我们的工作标志着扩大基于振荡器的模拟加速器的功能,并进一步发展动态系统求解器的范围,以实现组合优化问题的范围。
The equivalence between the natural minimization of energy in a dynamical system and the minimization of an objective function characterizing a combinatorial optimization problem offers a promising approach to designing dynamical system-inspired computational models and solvers for such problems. For instance, the ground state energy of coupled electronic oscillators, under second harmonic injection, can be directly mapped to the optimal solution of the Maximum Cut problem. However, prior work has focused on a limited set of such problems. Therefore, in this work, we formulate computing models based on synchronized oscillator dynamics for a broad spectrum of combinatorial optimization problems ranging from the Max-K-Cut (the general version of the Maximum Cut problem) to the Traveling Salesman Problem. We show that synchronized oscillator dynamics can be engineered to solve these different combinatorial optimization problems by appropriately designing the coupling function and the external injection to the oscillators. Our work marks a step forward towards expanding the functionalities of oscillator-based analog accelerators and furthers the scope of dynamical system solvers for combinatorial optimization problems.