论文标题

雾射线中的内容流行度预测:基于联邦学习的聚类的方法

Content Popularity Prediction in Fog-RANs: A Clustered Federated Learning Based Approach

论文作者

Wang, Zhiheng, Jiang, Yanxiang, Zheng, Fu-Chun, Bennis, Mehdi, You, Xiaohu

论文摘要

在本文中,研究了雾无线电访问网络(F-RAN)中的内容流行度预测问题。基于聚集的联合学习,我们提出了一种新颖的移动性知名度预测策略,该政策将内容受欢迎程度整合在本地用户和移动用户方面。对于本地用户,通过学习本地用户和内容的隐藏表示形式可以预测内容受欢迎程度。本地用户和内容的初始功能是通过将邻居信息与自我信息合并在一起的。然后,引入了双通道神经网络(DCNN)模型,以从初始特征中产生深层的潜在特征来学习隐藏的表示。对于移动用户,内容受欢迎程度是通过用户偏好学习预测的。为了区分内容受欢迎程度的区域变化,采用了聚类联合学习(CFL),这使具有相似区域类型的雾接入点(F-AP)彼此受益,并为每个F-AP提供更专业的DCNN模型。仿真结果表明,我们提出的政策对传统政策进行了重大的绩效提高。

In this paper, the content popularity prediction problem in fog radio access networks (F-RANs) is investigated. Based on clustered federated learning, we propose a novel mobility-aware popularity prediction policy, which integrates content popularities in terms of local users and mobile users. For local users, the content popularity is predicted by learning the hidden representations of local users and contents. Initial features of local users and contents are generated by incorporating neighbor information with self information. Then, dual-channel neural network (DCNN) model is introduced to learn the hidden representations by producing deep latent features from initial features. For mobile users, the content popularity is predicted via user preference learning. In order to distinguish regional variations of content popularity, clustered federated learning (CFL) is employed, which enables fog access points (F-APs) with similar regional types to benefit from one another and provides a more specialized DCNN model for each F-AP. Simulation results show that our proposed policy achieves significant performance improvement over the traditional policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源