论文标题
Neururodf:3D形状表示的全向距离字段
NeuralODF: Learning Omnidirectional Distance Fields for 3D Shape Representation
论文作者
论文摘要
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,因此将一个表示形式转换为另一个表示(前向图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,它通过将深度从任何观看方向从任何3D位置存储到对象表面来编码几何形状。由于射线是ODF的基本单元,因此它可用于轻松地转换为通用的3D表示(例如网格或点云)。与限于表示闭合表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换与通用3D表示的ODF。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合到一个对象来学习捕获高质量的形状,并且还学会概括对共同的形状类别。
In visual computing, 3D geometry is represented in many different forms including meshes, point clouds, voxel grids, level sets, and depth images. Each representation is suited for different tasks thus making the transformation of one representation into another (forward map) an important and common problem. We propose Omnidirectional Distance Fields (ODFs), a new 3D shape representation that encodes geometry by storing the depth to the object's surface from any 3D position in any viewing direction. Since rays are the fundamental unit of an ODF, it can be used to easily transform to and from common 3D representations like meshes or point clouds. Different from level set methods that are limited to representing closed surfaces, ODFs are unsigned and can thus model open surfaces (e.g., garments). We demonstrate that ODFs can be effectively learned with a neural network (NeuralODF) despite the inherent discontinuities at occlusion boundaries. We also introduce efficient forward mapping algorithms for transforming ODFs to and from common 3D representations. Specifically, we introduce an efficient Jumping Cubes algorithm for generating meshes from ODFs. Experiments demonstrate that NeuralODF can learn to capture high-quality shape by overfitting to a single object, and also learn to generalize on common shape categories.