论文标题

通过机器学习的科学:量化病后热层冷却

Science through Machine Learning: Quantification of Poststorm Thermospheric Cooling

论文作者

Licata, Richard J., Mehta, Piyush M., Weimer, Daniel R., Drob, Douglas P., Tobiska, W. Kent, Yoshii, Jean

论文摘要

机器学习(ML)通常被视为一种黑盒回归技术,无法提供相当大的科学见解。 ML模型是通用函数近似器,如果正确使用,则可以提供与用于拟合的地面图数据集有关的科学信息。 ML比参数模型的好处是,没有预定义的基础函数限制可以建模的现象。 In this work, we develop ML models on three datasets: the Space Environment Technologies (SET) High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched dataset of outputs from the Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer-derived density dataset from CHAllenging Minisatellite Payload (CHAMP).将这些ML模型与海军研究实验室质谱仪和不相互分的散射雷达(NRLMSIS 2.0)模型进行了比较,以研究中热球体中传播后冷却的存在。我们发现NRLMSIS 2.0和JB2008-ML都不能解释后风化后的冷却,因此在强烈的地磁风暴之后的时期(例如2003年万圣节风暴)在时期内表现不佳。相反,HASDM-ML和Champ-ML确实显示了传感后冷却的证据,表明这种现象存在于原始数据集中。结果表明,根据位置和暴风雨强度,速度1-3天的密度降低可能会发生1--3天。

Machine learning (ML) is often viewed as a black-box regression technique that is unable to provide considerable scientific insight. ML models are universal function approximators and - if used correctly - can provide scientific information related to the ground-truth dataset used for fitting. A benefit to ML over parametric models is that there are no predefined basis functions limiting the phenomena that can be modeled. In this work, we develop ML models on three datasets: the Space Environment Technologies (SET) High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched dataset of outputs from the Jacchia-Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer-derived density dataset from CHAllenging Minisatellite Payload (CHAMP). These ML models are compared to the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS 2.0) model to study the presence of post-storm cooling in the middle-thermosphere. We find that both NRLMSIS 2.0 and JB2008-ML do not account for post-storm cooling and consequently perform poorly in periods following strong geomagnetic storms (e.g. the 2003 Halloween storms). Conversely, HASDM-ML and CHAMP-ML do show evidence of post-storm cooling indicating that this phenomenon is present in the original datasets. Results show that density reductions up to 40% can occur 1--3 days post-storm depending on location and the strength of the storm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源