论文标题

连贯状态的谐波系统中的纠缠

Entanglement in harmonic systems at coherent states

论文作者

Katsinis, Dimitrios, Pastras, Georgios

论文摘要

众所周知,田间理论的纠缠熵在其基础状态下以区域法术语为主,与黑洞的熵相似。有趣的是,通过表明引力动力学从纠缠热力学的第一定律中出现,是否可以扩展这种相似性。回答这个问题需要模块化哈密顿量的规范。在以上的动机上,我们研究了位于任何古典状态的谐波系统玩具模型,即任何连贯的状态。我们明确指定降低的密度矩阵及其时间进化以及模块化的哈密顿量。有趣的是,时间演变是统一的,我们指定了产生它的有效哈密顿量。我们的结果提供了在离散的自由标量场理论中研究重力与纠缠之间相似性的工具(Phys Rev Lett 71:666,1993)。

It is well-known that entanglement entropy in field theory at its ground state is dominated by an area law term, presenting a similarity to the entropy of black holes. It is interesting to investigate whether this similarity can be extended by showing that gravitational dynamics emerges from the first law of entanglement thermodynamics. Answering this question requires the specification of the modular Hamiltonian. Motivated by the above, we study entanglement in the toy model of harmonic systems lying at any classicalmost state, i.e. any coherent state. We specify explicitly the reduced density matrix and its time-evolution, as well as the modular Hamiltonian. Interestingly, the time evolution is unitary and we specify the effective Hamiltonian which generates it. Our results provide the tools to investigate the similarity between gravity and entanglement in discretized free scalar field theory in the framework of (Phys Rev Lett 71:666, 1993).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源